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1 Randomized Algorithms and Probability

1.1 Definitions

Independence

P [A and B] = P [A]P [B]

For a random variable
∀a, b P [Y = a&Z = b] = P [Y = a]P [Z = b]

E[Y Z] = E[Y ]E[Z]

Mutually Exclusive

P [A|B] = P [A] + P [B]

Conditional Probability

P [A|B] =
P [A&B]

P [B]
, P [B] > 0

Permutations

There are n! ways of ordering n items There are n!
(n−k)! ways of ordering k distinct items from a set of n

There are
(
N
k

)
= n!

(n−k)!k! ways of choosing k out of n

Binomial Distribution

P [X = k] =

(
n

k

)
pk(1− p)n−k

E[X] = np

σ2 = np(1− p)

P [X ≥ K] ≤
(
n

k

)
pk

P [X ≤ k] =

(
n

k

)
(1− p)n−k
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1.2 Handy tricks

1− x ≤ e−x (1)

Markov’s Inequality

If the mean of a non-negative random variable X is µ, the for every a > 0

P [X ≥ αµ] ≤ 1

α
(2)

Prove

Chebyshev’s Inequality

P [|X − E[X]| ≥ a] ≤ 1

a2
V ar(X) (3)

(4)

Chernoff bounds

P [X − µ ≥ r] ≤
(µe
r

)r
P [X ≥ (1 + β)µ] ≤ e−β2µ/3, 0 < β < 1

P [X ≤ (1− β)µ] ≤ e−β2µ/2, 0 < β < 1

1.3 Birthday Paradox

• Many people in a room

• Is there a pair of people with the same birthday?

Approach 1: Probability of all birthdays distinct

Different sequences of 25 birthdays

= 365 ∗ 365 ∗ 365 ∗ 365 = 36525

Number of sequences where all birthdays are distinct

= 365 ∗ 364 ∗ · · · ∗ 341 =

(
365

25

)
25!

Probability of all 25 having a different birthday

=

(
365
25

)
25!

36525

Hard to calculate due to large power (overflow)
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Approach 2

First person has a birthday, second has birthday different with probability 1− 1/365, etc

With n possible birthdays and m people, probability of all unique is

1(1− 1

n
)(1− 2

n
)(1− 3

n
) . . . (1− m− 1

n
)

By (1)

≤ exp
(
−
[ 1

n
+

2

n
+ · · ·+ m− 1

n

])
= e−S

S =
1

n
+

2

n
+ · · ·+ m− 1

n

Summed numerators of S constitute an arithmetic series

1 + 2 + · · ·+ (m− 1) =
m(m− 1)

2

∴ S ≥ (m− 1)2

2n

When S ≥ loge 2 the probability that all birthdays are different drops below 0.5

Happens when m ≥ 1 +
√

2n loge 2

1.4 Coupon Collecting

• Each box contains one coupon uniformly at random from the n coupons

• Expected number of boxes to collect all n coupons?

Xi is number of boxes bought while you held i− 1 different kinds of coupon

• Zero coupons at first

• One coupon after first box

• Two coupons after more boxes

Total number of boxes bought is X1 +X2 + · · ·+Xn Expected value is sum of all expectations (linearity
of expectation)

Calculating Expectation

With i − 1 different kinds of coupons, probability that next box has a new kind of coupon is n−(i−1)
n =

# new kinds of coupon
# kinds of coupon

∴ E[Xi] =
n

n− (i− 1)
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Sum of expectations

∑
i

Xi =
n

n
+

n

n− 1
+

n

n− 2
+
n

2
+
n

1

= n(1 + 1/2 + 1/3 + 1/4 + ...+ 1/n)

= n(Hn) (Harmonic series)

Hn is very close to lnn

Integrating 1
x from 1 to n, can show that Hn lies between lnn and (lnn) + 1

n lnn ≤E[boxes] ≤ n lnn +n

Tighter bounds

• Each random variable Xi is an independent geometric random variable

• Calculate variance of sum X = X1 +X2 + · · ·+Xn

• Can sum variances due to independence

• Variance of geometric RV is 1−p
p2
≤ 1

p2

• Variance is at most
(

n
n−(i−1)

)2
• Summed variance is n2

(
1
n2 + 1

(n−1)2 + 1
(n−2)2+···+ 1

22
+1

)
•
∑

i=1
1
i2

converges to π2/6

• By Chebyshev’s inequality, the probability of buying more than 2nHn boxes is P [|X−nHn| ≥ nHn] ≤
n2π2/6
(nHn)2

≈ O(1/ log2 n)

Page 31

1.5 Coin Tosses

Sequences of tosses

P46

Streaks in coin tosses

Expected length of longest streak of heads in n fair tosses

• Starting with the ith toss, probability of a streak of at least k heads

• Each flip is independent, so at most (1/2)k

• For streak length k = 2 log2 n, probability of length k at position i is at most 1
2

2 log2 n = 1/n2

• Considering all n (actually fewer, but good upper bound) starting points, the probability of a streak
of length k = 2 log2 n is at most 1

n2 + 1
n2 + 1

n2 + · · · = 1
n
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• Expected value of the longest streak is at most 2 log nP [longest at most 2 log n]+nP [longest at least 2 log n]

• Streak can be at most n in length with n coin tosses

• Bound is as most (2 log n) + n 1
n = (2 log n) + 1

We should expect logarithmic streaks

• Split up n coin flips into consecutive epochs of (log n)/2 flips

• For one epoch, proability of all heads is 1
2(logn)/2

= 1
(2logn)1/2

= 1√
n

• Probability an epoch is not a run of all heads is 1− 1√
n

• Epochs are independent, so probability that none of the 2n/(log n) epochs is a streak of all heads is
(1− 1√

n
)2n/ logn

• Use (1) to bound this by exp(−2
√
n/ logn) which is at most 1/n2 when n is big

1.6 Balls in bins

Coupon collecting and birthday are both variants of this

Maximum Load

• For m = n on average each bin has exactly one ball

• At worst, all balls in the same bin with max load n (very unlikely)

• Max load with high probability is something like lnn/ ln lnn

Focusing on a particular bin, the probability that it receives at least M balls is at most Don’t understand
this

• Probability that all M balls land there is
(
1
n

)M
• The number of sets of M balls is

(
n
m

)
• A loose (union) bound is at most

(
n
m

)(
1
n

)M
which is at most 1

M ! ≤
(
e
M

)M
• MM

M ! ≤ e
M because ex = 1 + x

1! + x2

2! + . . .

• P59 what the fuck

• Probability that some bin has at least M balls is at most 1/n

• Very unlikely that with n balls into n bins there is some bin with more than 3 lnn/ ln lnn balls

2 Frequent Items

2.1 Misra-Gries Algorithm

• Keep track of k − 1 items with a counter for each

• For each new item x

– If x is a tracked item, increment counter
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– If x is not tracked and if fewer than k − 1 items are tracked, add x to the tracked items with a
count of 1

– Else we already have k tracked items and x is not one of them

∗ Decrement the count of every tracked item

∗ Evict every tracked item that now has count zero

• At the end of the stream return all tracked items

Properties

• Space required is proportional to product of k and max{log(Universe size), log(Stream length)}

• Only need one pass through data

• For all items, the frequency estimate is at most the true frequency and at least the true frequency
minus m/k

Charging

• Whenever we decrement, it’s because the item was present earlier

• When we decrement, do k decrements together:

– One for each of the k − 1 tracked elements

– One for the new item x that caused decrements (pretend gave x frequency 1 and immediately
decremented)

• Charge each decrement of an item to earlier occurrence of that item

• Since m item occurrences in the stream, there are at most m/k such k-at-a-time decrement instances

• Hence estimated frequency count is at least true count minus m/k

• Items with frequency more than m/k must have a positive frequency and be tracked, but some
tracked items may not be that frequent

2.2 Reservoir Sampling

• Want to take uniform random sample wihout replacement of a stream of data

• Don’t know length of stream m

• Do know k, number of items want to sample

Algorithm

• Let S[1. . . k] be empty array

• Let m be 0

• For each item x

– Increment m
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– If m ≤ k put x in S[m]

– Else

∗ Choose r uniformly in [1 . . .m]

∗ If r ≤ k, S[r] becomes x

• When queried, output S

Proof

3 Counters

3.1 Morris counter

• Let z be 0

• When a new item arrives

– Flip a coin with heads probability 1/2z

– If heads, increment z

• Return 2z − 1 as estimated count

Properties

• Unbiased estimate

• Uses log log n bits

• Variance of Yn = E[2Zn ] is n(n− 1)/2

Combining Morris counters

Morris counter is inaccurate, but several independent instances can be combined together

• Group h = 2/ε2 Morris counters and take mean value (rv X)

– P [|X − n| ≥ εn] ≤ V ar(X)
ε2n2 from Chebyshev’s inequality

– Variance of X is 1/h times the variance of an individual Yn value, which is n(n− 1)/2

– Bound is 1
ε2n2

n(n−1)
4n2 < 1

4

– Probability that estimate is more than εn away from the true value n is bounded by less than
1/4

• Take c log 1
δ groups and return median of means

– Median of means is within εn of true value n with probability 1− δ

– If median of Xs is bad, it means that at least half of the independent Xs are bad

– Using Chernoff bound with β = 1, P [at least half bad] is at most e−L/12

– For L = c ln 1
δ and c = 12 the probability the median is bad is at most e− ln 1/δ
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• With c = 12, use 24 1
ε2

ln 1δ
log log n bits of space to get an accurate estimate with high probability 1− δ

within additive error εn of true count n

4 Hash functions

Desired properties

• Spreads items evenly

• Fast

• Hashes same key to same value (detemrinistic)

4.1 Bloom Filter

• Use a family of k hash functions

• Hash each arriving item with multiple hash functions

• Set hashed value in boolean array to true

• When checking for membership, check if hash of all functions is true in array

False positive probability

• m distinct elements in stream

• n cells in array (hash range)

• k different hash functions

• P[False after m elements] is
(
1− 1

n

)km
bounded by e−km/n ≡ p

• Different bits being true in the array are not independent (but assume they are for simplicity)

• P[False Positive] =
(
1−

(
1− 1

n

)km)k ≈ (1− e−km/n)k = (1− p)k

Choosing number of hash functions

• Given the array size and number of distinct items is known

• With more hash functions, greater chance of finding a false bit when querying an item that wasn’t
in the stream

• With more hash functions, also too many of the bits get turned true

• Take logarithm of false positive probability k log(1− e−km/n)

• Using calculus, minimise when k = (ln 2)n/m

• P[False positive] = 0.6185n/m

• Minimised when p = 1/2

8



5 Distinct Items

5.1 AMS

• Record the largest power of two that divides into a hash value which has been seen z

• Very efficient with binary representation, count the number of trailing zeroes

• Observe that if some item appears in the stream multiple times, it only potentially increases the
values of z at its initial appearance

Algorithm

• Let z be 0

• For each item x

– z ← max{z,zeros(h(x))}

• Return 2z+1/2

Properties

• P [D ≥ 3d] = P [Ya ≥ 1] ≤ d/2a ≤
√

2/3

• P [D ≤ d/3] = P [Yb+1 = 0] ≤ 2b+1/d ≤
√

2/3

• Var(Yr) =
∑

j Var(Xjr) ≤
∑

j E[X2
jr =

∑
j E[Xjr] = d/2r

• Shows estimate is within factor of three of d with probability greater than 0.5286

• Hash function is chosen from 2-universal family with pairwise independence

– For every pair of items, the two hash values assigned to the pair behave as if they were assigned
uniformly randomly

– Means variances can be added up

5.2 BJKST1

• Track the value of roughly 1/ε2 items where ε is an accuracy parameter

• Report maximum of tracked hash values and calculate appropriately

Algorithm

• Choose a hash h function uniformly at random from a 2-universal family that maps {1, 2, . . . , n} to
{1, 2, . . . , n3}

• Let t be 96/ε2

• Priority queue Q will record the t smallest hash values seen so far (initialise with t values > n3)

• For each item x
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– Let m be the largest hash value in Q

– If h(x) < m AND h(x) is not already in Q

∗ Replace m with h(x) in Q

– Let m be the largest hash value in Q

• Return t ∗ n3/m

Analysis

• With 2/3 probability, D lies within ±εd of the true number of distinct items d

• Space needed is O(log n) for each of the t hash values stored, so O((1/ε2) log n) total

• Update time is O(log t), that is O(log(1/ε)) comparisons in the priority queue, with each comparison
needing O(log n) time

• Probability of success can be boosted by taking the median of O(log(1/δ)) to obtain success proba-
bility 1− δ

• Proof

• Lower bound

6 Universal Hash Functions

• Domain of size n and range r

• Want pairwise independence

• Will settle for something less: For a given pair of distinct items, probability of choosing a hash
function that causes them to collide is at most 1/r

6.1 The function

• Choose a prime p that is as least as big as max{n, r}

• hab(x) = ((ax+ b) mod p) mod r

• Family of hash functions has

– a drawn from 1, 2, . . . , p− 1

– b drawn from 0, 1, 2, . . . , p− 1

6.2 Analysis

• g(x) = (ax+ b) mod p

• If g(x) = g(y), it means a(x− y) is divisible by p

– Primes can’t be broken up into parts

– p is bigger than each of a and x and y, can only happen if x− y = 0
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• Therefore collision in h only occurs by the action of mod r

• There is exactly one choice of a, b that leads to a particular pair g(x) = u, g(y) = v

• For each u there might be up to dp/re1 (minus 1 because of u itself) such v

• We can show that dp/re ≤ p
r + 1− 1

r

• There are p values of u so the number of colliding pairs is at most p(p− 1)/r

• The total number of pairs (u, v) is p(p− 1)

• The probability of a bad pair is at most 1/r

7 Estimating ”higher” functions

• Interested in functions like (Frequency of a)2 + (Frequency of b)2 + . . .

• Estimate Fk =
∑

x f
k
x

7.1 AMS

Algorithm

• Choose an item y uniformly at random from the stream (with position j)

• Let r be the number of occurrences of y after and including position j

• Return the value z = m(rk − (r−)k) where m is the length of the stream

Expected value

• Can do this with reservoir sampling

• Choose a value y to sample with probability proportional to fy

• Choose one of those fy instances of y uniformly at random

• For a given y

– Equally likely to pick each of the fy instances of y

–

E[Z] =
1

fy

fy∑
i=1

m[(ik − (i− 1)k]

=
1

fy
m
(
(1k − 0k) + (2k − 1k) + · · ·+ (fky − (fy − 1)k) = fky

)
= mfk−1y

– Probability of choosing y in the stream is fy/m

– Sum over all possibilities of y, E[Z] =
∑

y f
k
y
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Variance

• Mean value theorem bound

• Upper bound for variance m
∑

y kf
k−1
y fky = kmF2k−1

• kn1−1/kF 2
k

• Very large

Reducing variance

• Take mean of several estimators

• Groups of size q where q is 3Var(X)
ε2E(X)2

• Reservoir samplers are independent, variance of sum of q of these is Var(X)/q

• Use Chebyshev’s inequality, show that the grouped mean is more than (1 + ε)E[X] is at most 1/3

• Take median of several of these grouped means

– Constant times log(1δ ) to achieve estimate at most (1 + ε)E[X] with probability 1− δ

– Var(X)/[E(X)]2 is at most kn1−1/k

– Dominant terms in space bound are 1
ε2

and kn1−1/k

• Can obtain bound of O(n1−2/k) with other techniques

7.2 F2 sketch (AMS) (Tug-of-war)

Algorithm

• Pick a random hash function h mapping {1, 2, . . . , n} to ±1 from a four-universal family

• Let z ← 0

• As each item x arrives, with ”count” c:

– z ← z + ch(x)

• Return z2

Expected value

Z =
∑
i

fih(i)

E[Z2] = E[
∑
i

f2i h(i)2 +
∑

i
∑
j:j 6=i

fifjh(i)h(j)]
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Because h is four universal, the expected value of h(i)h(j) is just the product of individual expected
values

E[h(i)] = 0

E[Z2] =
∑
i

f2i = F2

Variance

• E[(Z2)2] = E[Z4] =
∑

i

∑
j

∑
k

∑
l fifjfkflE[h(i)h(j)h(k)h(l)]

• Terms except h(i)4 h(i)2h(j)2 cancel

• There are
(
4
2

)
= 6 copies of h(i)2h(j)2

• E[(Z2)2] = F4 + 6
∑

i

∑
j > if2i f

2
j

• Can show this is at most 2F 2
2

• Apply median of means

Geometric interpretation

• Take mean of collection of sketches, before applying median trick

• Random vector of form (Z1, Z2, . . . , Zt) for t ≈ 1/ε2

• 1
t

∑
j Z

2
j ≈ F2

• Euclidean length of the Z vector approximates Euclidean distance of the frequency vector, with a
much smaller dimension

7.3 Count-min sketch

• Estimates frequencies of items

• Can help find heavy hitters

• Works in a turnstile stream

• Linear

Algorithm

• Keep a family of d pairwise-independent hash functions and w buckets

• Each hash function maps an input to a value in {1, 2, . . . , w} (corresponds to columns in the array)

• When an item arrives with count increment c (could be negative), add c to several counters based
on hashed values of x with each hash function

• To estimate f(x), take the minimum value of the cells pointed to by the hash function family

• Space usage is d × w and each cell contains a counter of logm bits plus the d hash functions of
O(log n) bits each
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Accuracy

• Estimate returned is never an underestimate (for intuitive reasons)

• For row j, input y, inspect hj(y)

• All of y’s increments contribute, as do other elements x that collide hj(x) = hj(y)

• E[f̂j(y) = f(y) +
∑

x6=y P [hj(x) = hj(y)]f(x)

• Due to 2-way independence (or at least 2-universal), this is f(y) + 1
w

∑
x 6=y f(x) ≤ F (y) + F1/w

• Let Fk =
∑

x |f(x)|k to deal with negative counts for these sketches

Choosing w

• Want estimates within multiplicative accuracy ε with high probability

• w = 2/ε

• E[f̂j(y) ≤ f(y) + εF1
2 , by Markov’s inequality P [Yj − f(y) ≥ εF1] ≤ 1

2

• This is just for one row

Choosing d

• For d rows, due to independence P [Y1 − f(y) ≥ εF1 ∩ Y2 − f(y) ≥ εF1 ∩ Yd − f(y) ≥ εF1] ≤
(
1
2

)d
• d = log2(

1
delta) so probability of a bad estimate of y for one of the values in the domain [1, 2, . . . , n]

is at most δ

• δ′ = δ
n , so the probability of some bad estimate is at most n× δ′ = δ

• The number of columns should be log
(
1
δ′

)
= logn + log

(
1
δ

)
Summary

• d hash functions and d× w size table with counters of size logm

• Total space O
(
1
ε (log 1

δ + log n)(logm+ log n)
)

• Estimates accurate within additive term of εF1

7.4 Count sketch

• Also use a table d× w

• w = 3
ε2

, roughly square of width of count-min sketch

• Hash functions hj , family of d hash functions g, which are also 2-universal but map to {−1,+1}
rather than w

• Uses more space, has a 1
ε2

factor instead of a 1
ε factor

• Has better additive error (εF1 as opposed to ε
√
F2)
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Algorithm

• When see an item x with count increment c, instead of adding c to the cells, add gj × c

• Return the median of the d values gj(y)T [j, hj(y)] stored for a given item y where T is the table of
estimated counts

Expected value

• Ij(x) is the indicator that hash function j sends x and y to the same cell in row y

• E[Yj ] = E[gj(y)[gj(y)f(y) +
∑

x 6=y gj(x)f(x)Ij(x)]

• gj(y)gj(y) = 1 because it’s a hash function mapping to ±1

• For each x that is not equal to y, E[gj(y)gj(x)f(x)Ij(x)] = f(x)E[gj(y)gj(x)]E[Ij(x)]

– f(x) is not a random variable

– gj and Ij are independent hash functions

• E[gj(y)gj(x)] = E[gj(y)]E[gj(x)] = 0 as it is 2-way independent

• ∴ E[Yj ] = f(y)

Variance

Expand to deal with

• Pairs of x, x (neither equal to y)

• Pairs of x 6= z (neither equal to y)

Var[(Yj)] = E
[
[Yj − f(y)]2

]
= E

[(∑
x 6=y

gj(y)gj(x)f(x)Ij(x)
)2]

= E[
∑
x 6=y

gj(x)2f(x)2Ij(x)2] + E[
∑

x 6=z, 6=y
f(x)f(z)gj(x)gj(z)Ij(x)Ij(z)]

=
∑
x 6=y

f(x)2(
1

w
) + 0(two way independence)

≤ 1

w

∑
x

f(x)2 ≡ F2/w

w =
3

ε2

Using Chebyshev’s inequality

P [|Yj − f(y)| ≥ ε
√
F2] ≤

Var[Yj ]

ε2F2
≤ 1

ε2w
≤ 1

3

There are d rows and n items, so need log(1δ ) + log n rows to have a high probability of accurate esti-
mates
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8 Sketches

8.1 Dyadic intervals

• Includes all integers from one power of two to the next

• Organised into sub-families, each comprising intervals of th same width

– Family 0: [0, 1), [1, 2), [2, 3), . . .

– Family 1: [0, 2), [2, 4), [4, 6), . . .

– Family 2: [0, 4), [4, 8), [8, 12), . . .

• General format is [k2̇j , (k + 1)2̇j)

• An arbitrary sub-interval of [0, n) can be broken into at most 2 log n dyadic subranges

8.2 Heavy Hitters

• Which items are especially frequent (frequency ≥ φF1)

• Naive approach to repeatedly query each item and ask for estimate of frequency (lots of false positives,
slow)

• If turnstile model, only need to search for each item as it appears in the stream and record heavy
hitters in a separate table (still false positive, fast)

• Count-min supports decrements

Turnstile model

• Keep a family of count-min sketches in binary tree

• Each node in binary tree represents a subset of the elements, broken into two further subsets at the
next lower level

• Nodes in a single level of the tree correspond to elements that correspond to a single count-min sketch

• Each level in the tree demands searching for several super-items to determine that they are heavy
hitters, but there is only a small amonut of work per node, and only O( 1

φ log n) nodes to explore, due
to only 1/φ per level

• Also helps find the total frequency of a range of items

• Can combine ranges to find other ranges

Dyadic interval sketches for range queries

• Using one count-min sketch per level, can see with log n levels (and sketches), can record enough
information for every possible range query.

– At most two interval queries per sketch

– Since there are more queries, to obtain the same accuracy as before need each sketch to be log n
wider
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– Since there are log n sketches, total space needed is O(1ε log3 n)

9 Sparse Recovery

• Given a vector (x1, x2, . . . , xn), try to recovery the k largest coordinates from an approximate version
of x

• A vector with only k non-zero components is k-sparse

• Aim to minimize Euclidean error errk(x) = mink-sparse z ||z − x||22
• Try to estimate error using count sketch

• Difficult because allow deletions in input

9.1 Count sketch for sparse recovery

• Count sketch gives point estimates with probability 2/3 (in each row) of

|x̂i − xi| < ε
√
F2

=

√
3√
w
||x||2|

=

√
3√
w
err0(x)

• To estimate errk(x), we increase the width of count-sketch from 3/ε2 to 3k/ε2

• Now with probability > 1/2

|x̂i − xi| <
ε√
k
errk(x)

Heavy collisions

• Let the heavies be the k largest coordinates in the true vector x (only k heavies)

• When reporting point estimate of another coordinate j, if a heavy coordinate collides then we are
likely to lose information about non-heavy coordinate

• Due to 2-universality, probability of a heavy colliding with j is only k
w = ε2

3

• If no heavy collision, probability of an estimate x̂j of xj within
√
3√
w

= ε√
k

factor times ||x̆||2 where x̆

is the vector x without the heavy components, is > 2/3

• ||x̆|| = errk(x)

• The k largest components of the count sketch may not be the same as the largest components of the
actual x vector, but they give a good approximation

• Let the vector obtained from the k-largest components of x̂ (the vector hidden inside the count
sketch)

• Assuming that each component of x̂ differs from x by at most ε√
k
errk(x) (shown above), with high

probability:
||x− z||2 ≤ (1 + 5ε)errk(x)
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Error bounds

• Let k largest components of x be set S (unknown)

• Let k largest components of x̂ be set T

• Total ||z − x||22 is sum of ||z − x||22 from each subset of coordinates with the three parts

– T

∗ There are k coordinates in T

∗ Each zi for i in T is x̂i

∗ Error in each is by assumption at most ε
kerr

k(x)

∗ Therefore the total ||z − x||22 on T is at most k
(
ε√
k
errk(x)

)2
= ε2E2 where E stands for

errk(x)

– S\T

∗ zi = 0 so the error is
∑

i x
2
i

– [n]\(S ∪ T )

∗ zi = 0 so the error is
∑

i x
2
i

• S and T are each of size k so |S\T | = |T\S|

• xS\T ||22 ≤ ||xT\S ||22 + 8εE2

• E2 = ||xT\S ||22 + ||x[n]\(S∪T )||22
• Total ||z − x||22 of all parts bound by (1 + 9ε)E2

• Taking final square root, bound is (1 + 5ε)E

• What the fuck

10 `0 Sampling

• Want to sample roughly in proportion to frequency in stream

• Only know how to do in additive stream

• Need to handle deletions

10.1 Sparse recovery for sampling

• If the input vector x is k-sparse, then E = 0 and count-sketch would return x exactly, if we knew
how to identify the k components easily
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Ganguly’s Test

On a stream of (aj , cj) pairs:

F1 ← F1 + ci

U ← U + ajcj

V ← cja
2
j

∴ U =
∑
i

ifi A scaled average across items

∴ V =
∑
i

i2fi A scaled E[I2] across items

Test whether
(
U
F1

)2
= V

F1
, that is, is the variance equal to zero.

• Only makes sense if all values of fi are non-negative

Fingerprint Test

Deal with negative frequencies

• Choose a large prime p

• Choose a random q ∈ {0, 1, . . . , p}

• Compute τ =
∑

i xiq
i mod p

• Test whether τ = F1q
U/F1 mod p

If there is a single i with non-zero frequency xi

• U = ixi

• Fi = xi

• F1q
U/F1 = xiq

i = τ( mod p)

• Test succeeds

If there is not just one item with non-zero frequency, low probability of false positive

• B(q) =
∑

i xiq
i − F1q

U/F1 is a polynomial in q that we are testing for divisibility by p

• Since polynomial B(q) has degee n, it has at most n roots modulo p

• But q was chosen independently, so probability it is a root is at most n/p where p is very large

1-sparse to k-sparse

Finding a k-sparse vector

• Make 2k buckets and hash all the coordinates to these

• In each bucket, run 1-sparse recovery

• If x is indeed k-sparse, then the probability that just one coordinate lands in a particular bucket is
about 1/2
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• We now make log
(
k
δ

)
copies of this bucketing structure, so the probability that a given coordinate

in A is never alone is at most
(
1
2

)log ( k
δ

)
= δ

k

• Since there are k non-zero coordinates, by the union bound the probability of failure is just delta

• The space required is O(k log(kδ ))

Algorithm

• Construct a nested family of random subsets of the coordinates {1, 2, . . . , n} so that subset Sj contains
n/2j coordinates, for j from 0 up to log n

• Build a k-wise independent hash functoin mapping from n to n3

• Coordinate i is included in subset j if and only if the hash value of the coordinate i is less than n3/2j

• From each subset, attempt sparse recovery with k = d4 log( 1
delta)e

• From the largest-size (smallest index) subset that succeeds in returning a k-sparse vector, return a
uniformly random coordinate (the one with the smallest hash)

Analysis

• Succeeds with probability 1− δ

• If there fewer than k non-zero coordinates in x, then even the all-n coordinates sample will succeed,
and we ar egood

• Otherwise,

– let A be the set of non-zero coordinates in the stream A = {i : fi 6= 0}

– The expected size of |A ∩ Sj | is |A|/2j via an averaging argument

– So there is some j for which E[|A ∩ Sj |] lies between k/3 and 2k/3

– Hence with probability at least 1− δ there are at least 1 and at mots k coordinates in |A ∩ Sj |
so a k-sparse vector, with at least one non-zero component, is returned

11 Metric-style k-center clustering

• Can build at most k warehouses/facilities/cluster centers

• Seek to minimize the worst of the service costs to each customer from its nearest facility

– Don’t add up service costs

– Simply focus on the customer that is the furthest from all facilities

• Can’t be solved exactly in a reasonable amount of time (NP hard)

• Best in a reasonable time is twice as optimal
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11.1 Triangle inequality

• d(x, y) represents distance between x and y

• d(x, z) ≤ d(x, y) + d(y, z)

11.2 Standard algorithm

Run over an array, not streaming

• Pick a point arbitrarily

• While we have picked fewer than k points

– Pick the point that is farthest from the points picked so far (that is, has maximumum minimum
distance to the picked points)

– Return the k picked points

11.3 Doubling algorithm

Uses O(k) space

Lemma

If there are k + 1 points all at distance t apart from one another in the input, then no matter what set of
k representatives I choose, the solution cost must be at lesat t/2

Algorithm

• Initialize by taking first k + 1 elements from the stream and setting (y,z) to be the closest pair in
these first k + 1 elements

• Let τ be d(y, z) and let our representatives R be the k + 1 elements so far, except z

• For each new item x

• If it’s minimum distance to an element of R is > 2τ

– Add x to R

– While |R| > k:

∗ // Property 3 is true here

∗ τ ← 2τ

∗ Find a maximal subset R∗ of R so that for every pair of distinct items in R∗, their distance
is at least τ

∗ Let R be R∗
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Properties

1. For all pairs of items in R, their distance is at least τ

2. The k-center cost of R with the whole stream (so far) is at most 2τ

3. After initialization, and just before each reset of R: An optimal solution has cost at least τ/2

At initialisation, the properties are valid

1. Follows immediately from the fact that τ = d(y, z) for the closest pair (y, z)

2. In fact it’s τ , as z is the only point not in R

3. Follows from Lemma

If x is not added, properties valid

1. R does not change, so this holds

2. x is close to R, so this holds

3. Don’t need at this point

If x is added, properties valid
During add of x

1. x’s minimum distance to an element of R is > 2τ and it is added to R, remains true even as R
changes.

2. As x is added to R, its solution cost for the stream is at most ≤ 2τ

3.

During while loop

1. Choosing the new R as defined by algorithm demands this property remains true

2. Since this was already true, after τ was doubled, but before the new R∗ was chosen, ∆(σ,R) ≤ τ
Consider an arbitrary item x in stream σ

• If it’s closest point in R, xR is also in R∗, then x is within τ of R∗

• If xR not in R∗, since set R∗ was maximal, with each pair at distance τ from one another, every
other point in R, including xR is within τ of R∗

• So by the Lemma, x is within 2τ of R∗

3. Before we reset R in the while loop, R is a set of ≥ k + 1 points that have distance at least τ from
one another, so by triangle inequality this holds

Effectiveness of doubling algorithm

• From property 2, at the end of the stream, k-center cost of R with the whole stream (so far) is at
most 2τ

– Final R is R̂; final τ is called τ̂ , σ is the stream, ∆ is the k-center cost funtcion

– ∆(σ, R̂) ≤ 2τ̂

• From property 3, just before the last time we update R, an optimal solution has cost at least τ/2
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• When we update R for the final time, we have τ̂ = 2τ (that is, the τ used to found the optimal cost)
so the ratio of ∆(σ, R̂) to the optimal cost is at most 2τ̂

−τ/2 = 2τ̂
(−τ/2)/2 = 8

• Solution has at most eight times the optimal cost

11.4 Guha’s algorithm

Uses O
(
k
ε

)
space

Simple Thresholding Algorithm

• Maintain a set R of representatives of the stream that are at least 2τ apart from one another

– If the stream contains an item ≥ 2τ from R then add it to R

– If at some stage R has size at least k + 1, then FAIL

– Otherwise, output R

• Either R is a solution of cost 2τ because it never had more than k items

• Or if it returns fail, the Lemma states that there is no solution of cost less than τ

Guha’s Algorithm

• Produces an α+O(ε) factor approximation of optimal (in this case α = 2)

• Initialize by determining a lower bound c on optimal cost

• Let p = dlog1+ε
(
α/ε
)
e

• Maintain at all times p instances of the simple algorithm

• Initially, the thresholds for the instances are c(1 + ε), c(1 + ε)2, . . . , c(1 + ε)p

• Whenever an instance returns FAIL:

– Raise its threshold by a factor of (1 + ε)p

– Although this instance cannot access directly the items it has already seen, it relies on the
representatives R of the stream so far to represent the part of the stream already read

Space requirements

• Initially, O(k) space to determine a lower bound

• Then p copies of a O(k) space simple algorithm

• With α being constant, total space is

O
(
k log1+ε

(α
ε

))
= O

( k log1ε
log(1 + ε)

)
= O

((k
ε

log
1

ε

)
• Relying on facts that

– log(1 + ε) ≈ ε
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– In our case, α = 2

Performance

• Focus on the instance with the smallest threshold that succeeds

• Let t be this threshold

– But the threshold of this instance might have increased several times as the streamd flowed

– Say it increased j times

– Had the following thresholds t1, t2, . . . , tj+1 = t

– Break up the stream σ into j+1 phases, each corresponding to a different threshold σ1, σ2, . . . , σj+1

• In particular, threshold ti = tj+1/((1 + ε)p)j+1−i

• Chose p = dlog1+ε
(
α/ε
)
e so that (1 + ε)p ≥ α/ε

• Hence ti ≤
(
ε
α

)j+1−1
t

• Rest of this analysis

• Cost of an optimal solution is at least t/(1 + ε)

• Solution is within (1 + ε)(α+O(ε)) = α+O(ε) of optimal
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