
Stream Computing and Applications

Benjamin Ding

November 16, 2018

1 Randomized Algorithms and Probability

1.1 Definitions

Independence

P [A and B] = P [A]P [B]

For a random variable
∀a, b P [Y = a&Z = b] = P [Y = a]P [Z = b]

E[Y Z] = E[Y]E[Z]

Mutually Exclusive

P [A|B] = P [A] + P [B]

Conditional Probability

P [A|B] =
P [A&B]

P [B]
, P [B] > 0

Permutations

There are n! ways of ordering n items There are n!
(n−k)! ways of ordering k distinct items from a set of n

There are
(
N
k

)
= n!

(n−k)!k! ways of choosing k out of n

Binomial Distribution

P [X = k] =

(
n

k

)
pk(1− p)n−k

E[X] = np

σ2 = np(1− p)

P [X ≥ K] ≤
(
n

k

)
pk

P [X ≤ k] =

(
n

k

)
(1− p)n−k

1

1.2 Handy tricks

1− x ≤ e−x (1)

Markov’s Inequality

If the mean of a non-negative random variable X is µ, the for every a > 0

P [X ≥ αµ] ≤ 1

α
(2)

Prove

Chebyshev’s Inequality

P [|X − E[X]| ≥ a] ≤ 1

a2
V ar(X) (3)

(4)

Chernoff bounds

P [X − µ ≥ r] ≤
(µe
r

)r
P [X ≥ (1 + β)µ] ≤ e−β2µ/3, 0 < β < 1

P [X ≤ (1− β)µ] ≤ e−β2µ/2, 0 < β < 1

1.3 Birthday Paradox

• Many people in a room

• Is there a pair of people with the same birthday?

Approach 1: Probability of all birthdays distinct

Different sequences of 25 birthdays

= 365 ∗ 365 ∗ 365 ∗ 365 = 36525

Number of sequences where all birthdays are distinct

= 365 ∗ 364 ∗ · · · ∗ 341 =

(
365

25

)
25!

Probability of all 25 having a different birthday

=

(
365
25

)
25!

36525

Hard to calculate due to large power (overflow)

2

Approach 2

First person has a birthday, second has birthday different with probability 1− 1/365, etc

With n possible birthdays and m people, probability of all unique is

1(1− 1

n
)(1− 2

n
)(1− 3

n
) . . . (1− m− 1

n
)

By (1)

≤ exp
(
−
[1

n
+

2

n
+ · · ·+ m− 1

n

])
= e−S

S =
1

n
+

2

n
+ · · ·+ m− 1

n

Summed numerators of S constitute an arithmetic series

1 + 2 + · · ·+ (m− 1) =
m(m− 1)

2

∴ S ≥ (m− 1)2

2n

When S ≥ loge 2 the probability that all birthdays are different drops below 0.5

Happens when m ≥ 1 +
√

2n loge 2

1.4 Coupon Collecting

• Each box contains one coupon uniformly at random from the n coupons

• Expected number of boxes to collect all n coupons?

Xi is number of boxes bought while you held i− 1 different kinds of coupon

• Zero coupons at first

• One coupon after first box

• Two coupons after more boxes

Total number of boxes bought is X1 +X2 + · · ·+Xn Expected value is sum of all expectations (linearity
of expectation)

Calculating Expectation

With i − 1 different kinds of coupons, probability that next box has a new kind of coupon is n−(i−1)
n =

new kinds of coupon
kinds of coupon

∴ E[Xi] =
n

n− (i− 1)

3

Sum of expectations

∑
i

Xi =
n

n
+

n

n− 1
+

n

n− 2
+
n

2
+
n

1

= n(1 + 1/2 + 1/3 + 1/4 + ...+ 1/n)

= n(Hn) (Harmonic series)

Hn is very close to lnn

Integrating 1
x from 1 to n, can show that Hn lies between lnn and (lnn) + 1

n lnn ≤E[boxes] ≤ n lnn +n

Tighter bounds

• Each random variable Xi is an independent geometric random variable

• Calculate variance of sum X = X1 +X2 + · · ·+Xn

• Can sum variances due to independence

• Variance of geometric RV is 1−p
p2
≤ 1

p2

• Variance is at most
(

n
n−(i−1)

)2
• Summed variance is n2

(
1
n2 + 1

(n−1)2 + 1
(n−2)2+···+ 1

22
+1

)
•
∑

i=1
1
i2

converges to π2/6

• By Chebyshev’s inequality, the probability of buying more than 2nHn boxes is P [|X−nHn| ≥ nHn] ≤
n2π2/6
(nHn)2

≈ O(1/ log2 n)

Page 31

1.5 Coin Tosses

Sequences of tosses

P46

Streaks in coin tosses

Expected length of longest streak of heads in n fair tosses

• Starting with the ith toss, probability of a streak of at least k heads

• Each flip is independent, so at most (1/2)k

• For streak length k = 2 log2 n, probability of length k at position i is at most 1
2

2 log2 n = 1/n2

• Considering all n (actually fewer, but good upper bound) starting points, the probability of a streak
of length k = 2 log2 n is at most 1

n2 + 1
n2 + 1

n2 + · · · = 1
n

4

• Expected value of the longest streak is at most 2 log nP [longest at most 2 log n]+nP [longest at least 2 log n]

• Streak can be at most n in length with n coin tosses

• Bound is as most (2 log n) + n 1
n = (2 log n) + 1

We should expect logarithmic streaks

• Split up n coin flips into consecutive epochs of (log n)/2 flips

• For one epoch, proability of all heads is 1
2(logn)/2

= 1
(2logn)1/2

= 1√
n

• Probability an epoch is not a run of all heads is 1− 1√
n

• Epochs are independent, so probability that none of the 2n/(log n) epochs is a streak of all heads is
(1− 1√

n
)2n/ logn

• Use (1) to bound this by exp(−2
√
n/ logn) which is at most 1/n2 when n is big

1.6 Balls in bins

Coupon collecting and birthday are both variants of this

Maximum Load

• For m = n on average each bin has exactly one ball

• At worst, all balls in the same bin with max load n (very unlikely)

• Max load with high probability is something like lnn/ ln lnn

Focusing on a particular bin, the probability that it receives at least M balls is at most Don’t understand
this

• Probability that all M balls land there is
(
1
n

)M
• The number of sets of M balls is

(
n
m

)
• A loose (union) bound is at most

(
n
m

)(
1
n

)M
which is at most 1

M ! ≤
(
e
M

)M
• MM

M ! ≤ e
M because ex = 1 + x

1! + x2

2! + . . .

• P59 what the fuck

• Probability that some bin has at least M balls is at most 1/n

• Very unlikely that with n balls into n bins there is some bin with more than 3 lnn/ ln lnn balls

2 Frequent Items

2.1 Misra-Gries Algorithm

• Keep track of k − 1 items with a counter for each

• For each new item x

– If x is a tracked item, increment counter

5

– If x is not tracked and if fewer than k − 1 items are tracked, add x to the tracked items with a
count of 1

– Else we already have k tracked items and x is not one of them

∗ Decrement the count of every tracked item

∗ Evict every tracked item that now has count zero

• At the end of the stream return all tracked items

Properties

• Space required is proportional to product of k and max{log(Universe size), log(Stream length)}

• Only need one pass through data

• For all items, the frequency estimate is at most the true frequency and at least the true frequency
minus m/k

Charging

• Whenever we decrement, it’s because the item was present earlier

• When we decrement, do k decrements together:

– One for each of the k − 1 tracked elements

– One for the new item x that caused decrements (pretend gave x frequency 1 and immediately
decremented)

• Charge each decrement of an item to earlier occurrence of that item

• Since m item occurrences in the stream, there are at most m/k such k-at-a-time decrement instances

• Hence estimated frequency count is at least true count minus m/k

• Items with frequency more than m/k must have a positive frequency and be tracked, but some
tracked items may not be that frequent

2.2 Reservoir Sampling

• Want to take uniform random sample wihout replacement of a stream of data

• Don’t know length of stream m

• Do know k, number of items want to sample

Algorithm

• Let S[1. . . k] be empty array

• Let m be 0

• For each item x

– Increment m

6

– If m ≤ k put x in S[m]

– Else

∗ Choose r uniformly in [1 . . .m]

∗ If r ≤ k, S[r] becomes x

• When queried, output S

Proof

3 Counters

3.1 Morris counter

• Let z be 0

• When a new item arrives

– Flip a coin with heads probability 1/2z

– If heads, increment z

• Return 2z − 1 as estimated count

Properties

• Unbiased estimate

• Uses log log n bits

• Variance of Yn = E[2Zn] is n(n− 1)/2

Combining Morris counters

Morris counter is inaccurate, but several independent instances can be combined together

• Group h = 2/ε2 Morris counters and take mean value (rv X)

– P [|X − n| ≥ εn] ≤ V ar(X)
ε2n2 from Chebyshev’s inequality

– Variance of X is 1/h times the variance of an individual Yn value, which is n(n− 1)/2

– Bound is 1
ε2n2

n(n−1)
4n2 < 1

4

– Probability that estimate is more than εn away from the true value n is bounded by less than
1/4

• Take c log 1
δ groups and return median of means

– Median of means is within εn of true value n with probability 1− δ

– If median of Xs is bad, it means that at least half of the independent Xs are bad

– Using Chernoff bound with β = 1, P [at least half bad] is at most e−L/12

– For L = c ln 1
δ and c = 12 the probability the median is bad is at most e− ln 1/δ

7

• With c = 12, use 24 1
ε2

ln 1δ
log log n bits of space to get an accurate estimate with high probability 1− δ

within additive error εn of true count n

4 Hash functions

Desired properties

• Spreads items evenly

• Fast

• Hashes same key to same value (detemrinistic)

4.1 Bloom Filter

• Use a family of k hash functions

• Hash each arriving item with multiple hash functions

• Set hashed value in boolean array to true

• When checking for membership, check if hash of all functions is true in array

False positive probability

• m distinct elements in stream

• n cells in array (hash range)

• k different hash functions

• P[False after m elements] is
(
1− 1

n

)km
bounded by e−km/n ≡ p

• Different bits being true in the array are not independent (but assume they are for simplicity)

• P[False Positive] =
(
1−

(
1− 1

n

)km)k ≈ (1− e−km/n)k = (1− p)k

Choosing number of hash functions

• Given the array size and number of distinct items is known

• With more hash functions, greater chance of finding a false bit when querying an item that wasn’t
in the stream

• With more hash functions, also too many of the bits get turned true

• Take logarithm of false positive probability k log(1− e−km/n)

• Using calculus, minimise when k = (ln 2)n/m

• P[False positive] = 0.6185n/m

• Minimised when p = 1/2

8

5 Distinct Items

5.1 AMS

• Record the largest power of two that divides into a hash value which has been seen z

• Very efficient with binary representation, count the number of trailing zeroes

• Observe that if some item appears in the stream multiple times, it only potentially increases the
values of z at its initial appearance

Algorithm

• Let z be 0

• For each item x

– z ← max{z,zeros(h(x))}

• Return 2z+1/2

Properties

• P [D ≥ 3d] = P [Ya ≥ 1] ≤ d/2a ≤
√

2/3

• P [D ≤ d/3] = P [Yb+1 = 0] ≤ 2b+1/d ≤
√

2/3

• Var(Yr) =
∑

j Var(Xjr) ≤
∑

j E[X2
jr =

∑
j E[Xjr] = d/2r

• Shows estimate is within factor of three of d with probability greater than 0.5286

• Hash function is chosen from 2-universal family with pairwise independence

– For every pair of items, the two hash values assigned to the pair behave as if they were assigned
uniformly randomly

– Means variances can be added up

5.2 BJKST1

• Track the value of roughly 1/ε2 items where ε is an accuracy parameter

• Report maximum of tracked hash values and calculate appropriately

Algorithm

• Choose a hash h function uniformly at random from a 2-universal family that maps {1, 2, . . . , n} to
{1, 2, . . . , n3}

• Let t be 96/ε2

• Priority queue Q will record the t smallest hash values seen so far (initialise with t values > n3)

• For each item x

9

– Let m be the largest hash value in Q

– If h(x) < m AND h(x) is not already in Q

∗ Replace m with h(x) in Q

– Let m be the largest hash value in Q

• Return t ∗ n3/m

Analysis

• With 2/3 probability, D lies within ±εd of the true number of distinct items d

• Space needed is O(log n) for each of the t hash values stored, so O((1/ε2) log n) total

• Update time is O(log t), that is O(log(1/ε)) comparisons in the priority queue, with each comparison
needing O(log n) time

• Probability of success can be boosted by taking the median of O(log(1/δ)) to obtain success proba-
bility 1− δ

• Proof

• Lower bound

6 Universal Hash Functions

• Domain of size n and range r

• Want pairwise independence

• Will settle for something less: For a given pair of distinct items, probability of choosing a hash
function that causes them to collide is at most 1/r

6.1 The function

• Choose a prime p that is as least as big as max{n, r}

• hab(x) = ((ax+ b) mod p) mod r

• Family of hash functions has

– a drawn from 1, 2, . . . , p− 1

– b drawn from 0, 1, 2, . . . , p− 1

6.2 Analysis

• g(x) = (ax+ b) mod p

• If g(x) = g(y), it means a(x− y) is divisible by p

– Primes can’t be broken up into parts

– p is bigger than each of a and x and y, can only happen if x− y = 0

10

• Therefore collision in h only occurs by the action of mod r

• There is exactly one choice of a, b that leads to a particular pair g(x) = u, g(y) = v

• For each u there might be up to dp/re1 (minus 1 because of u itself) such v

• We can show that dp/re ≤ p
r + 1− 1

r

• There are p values of u so the number of colliding pairs is at most p(p− 1)/r

• The total number of pairs (u, v) is p(p− 1)

• The probability of a bad pair is at most 1/r

7 Estimating ”higher” functions

• Interested in functions like (Frequency of a)2 + (Frequency of b)2 + . . .

• Estimate Fk =
∑

x f
k
x

7.1 AMS

Algorithm

• Choose an item y uniformly at random from the stream (with position j)

• Let r be the number of occurrences of y after and including position j

• Return the value z = m(rk − (r−)k) where m is the length of the stream

Expected value

• Can do this with reservoir sampling

• Choose a value y to sample with probability proportional to fy

• Choose one of those fy instances of y uniformly at random

• For a given y

– Equally likely to pick each of the fy instances of y

–

E[Z] =
1

fy

fy∑
i=1

m[(ik − (i− 1)k]

=
1

fy
m
(
(1k − 0k) + (2k − 1k) + · · ·+ (fky − (fy − 1)k) = fky

)
= mfk−1y

– Probability of choosing y in the stream is fy/m

– Sum over all possibilities of y, E[Z] =
∑

y f
k
y

11

Variance

• Mean value theorem bound

• Upper bound for variance m
∑

y kf
k−1
y fky = kmF2k−1

• kn1−1/kF 2
k

• Very large

Reducing variance

• Take mean of several estimators

• Groups of size q where q is 3Var(X)
ε2E(X)2

• Reservoir samplers are independent, variance of sum of q of these is Var(X)/q

• Use Chebyshev’s inequality, show that the grouped mean is more than (1 + ε)E[X] is at most 1/3

• Take median of several of these grouped means

– Constant times log(1δ) to achieve estimate at most (1 + ε)E[X] with probability 1− δ

– Var(X)/[E(X)]2 is at most kn1−1/k

– Dominant terms in space bound are 1
ε2

and kn1−1/k

• Can obtain bound of O(n1−2/k) with other techniques

7.2 F2 sketch (AMS) (Tug-of-war)

Algorithm

• Pick a random hash function h mapping {1, 2, . . . , n} to ±1 from a four-universal family

• Let z ← 0

• As each item x arrives, with ”count” c:

– z ← z + ch(x)

• Return z2

Expected value

Z =
∑
i

fih(i)

E[Z2] = E[
∑
i

f2i h(i)2 +
∑

i
∑
j:j 6=i

fifjh(i)h(j)]

12

Because h is four universal, the expected value of h(i)h(j) is just the product of individual expected
values

E[h(i)] = 0

E[Z2] =
∑
i

f2i = F2

Variance

• E[(Z2)2] = E[Z4] =
∑

i

∑
j

∑
k

∑
l fifjfkflE[h(i)h(j)h(k)h(l)]

• Terms except h(i)4 h(i)2h(j)2 cancel

• There are
(
4
2

)
= 6 copies of h(i)2h(j)2

• E[(Z2)2] = F4 + 6
∑

i

∑
j > if2i f

2
j

• Can show this is at most 2F 2
2

• Apply median of means

Geometric interpretation

• Take mean of collection of sketches, before applying median trick

• Random vector of form (Z1, Z2, . . . , Zt) for t ≈ 1/ε2

• 1
t

∑
j Z

2
j ≈ F2

• Euclidean length of the Z vector approximates Euclidean distance of the frequency vector, with a
much smaller dimension

7.3 Count-min sketch

• Estimates frequencies of items

• Can help find heavy hitters

• Works in a turnstile stream

• Linear

Algorithm

• Keep a family of d pairwise-independent hash functions and w buckets

• Each hash function maps an input to a value in {1, 2, . . . , w} (corresponds to columns in the array)

• When an item arrives with count increment c (could be negative), add c to several counters based
on hashed values of x with each hash function

• To estimate f(x), take the minimum value of the cells pointed to by the hash function family

• Space usage is d × w and each cell contains a counter of logm bits plus the d hash functions of
O(log n) bits each

13

Accuracy

• Estimate returned is never an underestimate (for intuitive reasons)

• For row j, input y, inspect hj(y)

• All of y’s increments contribute, as do other elements x that collide hj(x) = hj(y)

• E[f̂j(y) = f(y) +
∑

x6=y P [hj(x) = hj(y)]f(x)

• Due to 2-way independence (or at least 2-universal), this is f(y) + 1
w

∑
x 6=y f(x) ≤ F (y) + F1/w

• Let Fk =
∑

x |f(x)|k to deal with negative counts for these sketches

Choosing w

• Want estimates within multiplicative accuracy ε with high probability

• w = 2/ε

• E[f̂j(y) ≤ f(y) + εF1
2 , by Markov’s inequality P [Yj − f(y) ≥ εF1] ≤ 1

2

• This is just for one row

Choosing d

• For d rows, due to independence P [Y1 − f(y) ≥ εF1 ∩ Y2 − f(y) ≥ εF1 ∩ Yd − f(y) ≥ εF1] ≤
(
1
2

)d
• d = log2(

1
delta) so probability of a bad estimate of y for one of the values in the domain [1, 2, . . . , n]

is at most δ

• δ′ = δ
n , so the probability of some bad estimate is at most n× δ′ = δ

• The number of columns should be log
(
1
δ′

)
= logn + log

(
1
δ

)
Summary

• d hash functions and d× w size table with counters of size logm

• Total space O
(
1
ε (log 1

δ + log n)(logm+ log n)
)

• Estimates accurate within additive term of εF1

7.4 Count sketch

• Also use a table d× w

• w = 3
ε2

, roughly square of width of count-min sketch

• Hash functions hj , family of d hash functions g, which are also 2-universal but map to {−1,+1}
rather than w

• Uses more space, has a 1
ε2

factor instead of a 1
ε factor

• Has better additive error (εF1 as opposed to ε
√
F2)

14

Algorithm

• When see an item x with count increment c, instead of adding c to the cells, add gj × c

• Return the median of the d values gj(y)T [j, hj(y)] stored for a given item y where T is the table of
estimated counts

Expected value

• Ij(x) is the indicator that hash function j sends x and y to the same cell in row y

• E[Yj] = E[gj(y)[gj(y)f(y) +
∑

x 6=y gj(x)f(x)Ij(x)]

• gj(y)gj(y) = 1 because it’s a hash function mapping to ±1

• For each x that is not equal to y, E[gj(y)gj(x)f(x)Ij(x)] = f(x)E[gj(y)gj(x)]E[Ij(x)]

– f(x) is not a random variable

– gj and Ij are independent hash functions

• E[gj(y)gj(x)] = E[gj(y)]E[gj(x)] = 0 as it is 2-way independent

• ∴ E[Yj] = f(y)

Variance

Expand to deal with

• Pairs of x, x (neither equal to y)

• Pairs of x 6= z (neither equal to y)

Var[(Yj)] = E
[
[Yj − f(y)]2

]
= E

[(∑
x 6=y

gj(y)gj(x)f(x)Ij(x)
)2]

= E[
∑
x 6=y

gj(x)2f(x)2Ij(x)2] + E[
∑

x 6=z, 6=y
f(x)f(z)gj(x)gj(z)Ij(x)Ij(z)]

=
∑
x 6=y

f(x)2(
1

w
) + 0(two way independence)

≤ 1

w

∑
x

f(x)2 ≡ F2/w

w =
3

ε2

Using Chebyshev’s inequality

P [|Yj − f(y)| ≥ ε
√
F2] ≤

Var[Yj]

ε2F2
≤ 1

ε2w
≤ 1

3

There are d rows and n items, so need log(1δ) + log n rows to have a high probability of accurate esti-
mates

15

8 Sketches

8.1 Dyadic intervals

• Includes all integers from one power of two to the next

• Organised into sub-families, each comprising intervals of th same width

– Family 0: [0, 1), [1, 2), [2, 3), . . .

– Family 1: [0, 2), [2, 4), [4, 6), . . .

– Family 2: [0, 4), [4, 8), [8, 12), . . .

• General format is [k2̇j , (k + 1)2̇j)

• An arbitrary sub-interval of [0, n) can be broken into at most 2 log n dyadic subranges

8.2 Heavy Hitters

• Which items are especially frequent (frequency ≥ φF1)

• Naive approach to repeatedly query each item and ask for estimate of frequency (lots of false positives,
slow)

• If turnstile model, only need to search for each item as it appears in the stream and record heavy
hitters in a separate table (still false positive, fast)

• Count-min supports decrements

Turnstile model

• Keep a family of count-min sketches in binary tree

• Each node in binary tree represents a subset of the elements, broken into two further subsets at the
next lower level

• Nodes in a single level of the tree correspond to elements that correspond to a single count-min sketch

• Each level in the tree demands searching for several super-items to determine that they are heavy
hitters, but there is only a small amonut of work per node, and only O(1

φ log n) nodes to explore, due
to only 1/φ per level

• Also helps find the total frequency of a range of items

• Can combine ranges to find other ranges

Dyadic interval sketches for range queries

• Using one count-min sketch per level, can see with log n levels (and sketches), can record enough
information for every possible range query.

– At most two interval queries per sketch

– Since there are more queries, to obtain the same accuracy as before need each sketch to be log n
wider

16

– Since there are log n sketches, total space needed is O(1ε log3 n)

9 Sparse Recovery

• Given a vector (x1, x2, . . . , xn), try to recovery the k largest coordinates from an approximate version
of x

• A vector with only k non-zero components is k-sparse

• Aim to minimize Euclidean error errk(x) = mink-sparse z ||z − x||22
• Try to estimate error using count sketch

• Difficult because allow deletions in input

9.1 Count sketch for sparse recovery

• Count sketch gives point estimates with probability 2/3 (in each row) of

|x̂i − xi| < ε
√
F2

=

√
3√
w
||x||2|

=

√
3√
w
err0(x)

• To estimate errk(x), we increase the width of count-sketch from 3/ε2 to 3k/ε2

• Now with probability > 1/2

|x̂i − xi| <
ε√
k
errk(x)

Heavy collisions

• Let the heavies be the k largest coordinates in the true vector x (only k heavies)

• When reporting point estimate of another coordinate j, if a heavy coordinate collides then we are
likely to lose information about non-heavy coordinate

• Due to 2-universality, probability of a heavy colliding with j is only k
w = ε2

3

• If no heavy collision, probability of an estimate x̂j of xj within
√
3√
w

= ε√
k

factor times ||x̆||2 where x̆

is the vector x without the heavy components, is > 2/3

• ||x̆|| = errk(x)

• The k largest components of the count sketch may not be the same as the largest components of the
actual x vector, but they give a good approximation

• Let the vector obtained from the k-largest components of x̂ (the vector hidden inside the count
sketch)

• Assuming that each component of x̂ differs from x by at most ε√
k
errk(x) (shown above), with high

probability:
||x− z||2 ≤ (1 + 5ε)errk(x)

17

Error bounds

• Let k largest components of x be set S (unknown)

• Let k largest components of x̂ be set T

• Total ||z − x||22 is sum of ||z − x||22 from each subset of coordinates with the three parts

– T

∗ There are k coordinates in T

∗ Each zi for i in T is x̂i

∗ Error in each is by assumption at most ε
kerr

k(x)

∗ Therefore the total ||z − x||22 on T is at most k
(
ε√
k
errk(x)

)2
= ε2E2 where E stands for

errk(x)

– S\T

∗ zi = 0 so the error is
∑

i x
2
i

– [n]\(S ∪ T)

∗ zi = 0 so the error is
∑

i x
2
i

• S and T are each of size k so |S\T | = |T\S|

• xS\T ||22 ≤ ||xT\S ||22 + 8εE2

• E2 = ||xT\S ||22 + ||x[n]\(S∪T)||22
• Total ||z − x||22 of all parts bound by (1 + 9ε)E2

• Taking final square root, bound is (1 + 5ε)E

• What the fuck

10 `0 Sampling

• Want to sample roughly in proportion to frequency in stream

• Only know how to do in additive stream

• Need to handle deletions

10.1 Sparse recovery for sampling

• If the input vector x is k-sparse, then E = 0 and count-sketch would return x exactly, if we knew
how to identify the k components easily

18

Ganguly’s Test

On a stream of (aj , cj) pairs:

F1 ← F1 + ci

U ← U + ajcj

V ← cja
2
j

∴ U =
∑
i

ifi A scaled average across items

∴ V =
∑
i

i2fi A scaled E[I2] across items

Test whether
(
U
F1

)2
= V

F1
, that is, is the variance equal to zero.

• Only makes sense if all values of fi are non-negative

Fingerprint Test

Deal with negative frequencies

• Choose a large prime p

• Choose a random q ∈ {0, 1, . . . , p}

• Compute τ =
∑

i xiq
i mod p

• Test whether τ = F1q
U/F1 mod p

If there is a single i with non-zero frequency xi

• U = ixi

• Fi = xi

• F1q
U/F1 = xiq

i = τ(mod p)

• Test succeeds

If there is not just one item with non-zero frequency, low probability of false positive

• B(q) =
∑

i xiq
i − F1q

U/F1 is a polynomial in q that we are testing for divisibility by p

• Since polynomial B(q) has degee n, it has at most n roots modulo p

• But q was chosen independently, so probability it is a root is at most n/p where p is very large

1-sparse to k-sparse

Finding a k-sparse vector

• Make 2k buckets and hash all the coordinates to these

• In each bucket, run 1-sparse recovery

• If x is indeed k-sparse, then the probability that just one coordinate lands in a particular bucket is
about 1/2

19

• We now make log
(
k
δ

)
copies of this bucketing structure, so the probability that a given coordinate

in A is never alone is at most
(
1
2

)log (k
δ

)
= δ

k

• Since there are k non-zero coordinates, by the union bound the probability of failure is just delta

• The space required is O(k log(kδ))

Algorithm

• Construct a nested family of random subsets of the coordinates {1, 2, . . . , n} so that subset Sj contains
n/2j coordinates, for j from 0 up to log n

• Build a k-wise independent hash functoin mapping from n to n3

• Coordinate i is included in subset j if and only if the hash value of the coordinate i is less than n3/2j

• From each subset, attempt sparse recovery with k = d4 log(1
delta)e

• From the largest-size (smallest index) subset that succeeds in returning a k-sparse vector, return a
uniformly random coordinate (the one with the smallest hash)

Analysis

• Succeeds with probability 1− δ

• If there fewer than k non-zero coordinates in x, then even the all-n coordinates sample will succeed,
and we ar egood

• Otherwise,

– let A be the set of non-zero coordinates in the stream A = {i : fi 6= 0}

– The expected size of |A ∩ Sj | is |A|/2j via an averaging argument

– So there is some j for which E[|A ∩ Sj |] lies between k/3 and 2k/3

– Hence with probability at least 1− δ there are at least 1 and at mots k coordinates in |A ∩ Sj |
so a k-sparse vector, with at least one non-zero component, is returned

11 Metric-style k-center clustering

• Can build at most k warehouses/facilities/cluster centers

• Seek to minimize the worst of the service costs to each customer from its nearest facility

– Don’t add up service costs

– Simply focus on the customer that is the furthest from all facilities

• Can’t be solved exactly in a reasonable amount of time (NP hard)

• Best in a reasonable time is twice as optimal

20

11.1 Triangle inequality

• d(x, y) represents distance between x and y

• d(x, z) ≤ d(x, y) + d(y, z)

11.2 Standard algorithm

Run over an array, not streaming

• Pick a point arbitrarily

• While we have picked fewer than k points

– Pick the point that is farthest from the points picked so far (that is, has maximumum minimum
distance to the picked points)

– Return the k picked points

11.3 Doubling algorithm

Uses O(k) space

Lemma

If there are k + 1 points all at distance t apart from one another in the input, then no matter what set of
k representatives I choose, the solution cost must be at lesat t/2

Algorithm

• Initialize by taking first k + 1 elements from the stream and setting (y,z) to be the closest pair in
these first k + 1 elements

• Let τ be d(y, z) and let our representatives R be the k + 1 elements so far, except z

• For each new item x

• If it’s minimum distance to an element of R is > 2τ

– Add x to R

– While |R| > k:

∗ // Property 3 is true here

∗ τ ← 2τ

∗ Find a maximal subset R∗ of R so that for every pair of distinct items in R∗, their distance
is at least τ

∗ Let R be R∗

21

Properties

1. For all pairs of items in R, their distance is at least τ

2. The k-center cost of R with the whole stream (so far) is at most 2τ

3. After initialization, and just before each reset of R: An optimal solution has cost at least τ/2

At initialisation, the properties are valid

1. Follows immediately from the fact that τ = d(y, z) for the closest pair (y, z)

2. In fact it’s τ , as z is the only point not in R

3. Follows from Lemma

If x is not added, properties valid

1. R does not change, so this holds

2. x is close to R, so this holds

3. Don’t need at this point

If x is added, properties valid
During add of x

1. x’s minimum distance to an element of R is > 2τ and it is added to R, remains true even as R
changes.

2. As x is added to R, its solution cost for the stream is at most ≤ 2τ

3.

During while loop

1. Choosing the new R as defined by algorithm demands this property remains true

2. Since this was already true, after τ was doubled, but before the new R∗ was chosen, ∆(σ,R) ≤ τ
Consider an arbitrary item x in stream σ

• If it’s closest point in R, xR is also in R∗, then x is within τ of R∗

• If xR not in R∗, since set R∗ was maximal, with each pair at distance τ from one another, every
other point in R, including xR is within τ of R∗

• So by the Lemma, x is within 2τ of R∗

3. Before we reset R in the while loop, R is a set of ≥ k + 1 points that have distance at least τ from
one another, so by triangle inequality this holds

Effectiveness of doubling algorithm

• From property 2, at the end of the stream, k-center cost of R with the whole stream (so far) is at
most 2τ

– Final R is R̂; final τ is called τ̂ , σ is the stream, ∆ is the k-center cost funtcion

– ∆(σ, R̂) ≤ 2τ̂

• From property 3, just before the last time we update R, an optimal solution has cost at least τ/2

22

• When we update R for the final time, we have τ̂ = 2τ (that is, the τ used to found the optimal cost)
so the ratio of ∆(σ, R̂) to the optimal cost is at most 2τ̂

−τ/2 = 2τ̂
(−τ/2)/2 = 8

• Solution has at most eight times the optimal cost

11.4 Guha’s algorithm

Uses O
(
k
ε

)
space

Simple Thresholding Algorithm

• Maintain a set R of representatives of the stream that are at least 2τ apart from one another

– If the stream contains an item ≥ 2τ from R then add it to R

– If at some stage R has size at least k + 1, then FAIL

– Otherwise, output R

• Either R is a solution of cost 2τ because it never had more than k items

• Or if it returns fail, the Lemma states that there is no solution of cost less than τ

Guha’s Algorithm

• Produces an α+O(ε) factor approximation of optimal (in this case α = 2)

• Initialize by determining a lower bound c on optimal cost

• Let p = dlog1+ε
(
α/ε
)
e

• Maintain at all times p instances of the simple algorithm

• Initially, the thresholds for the instances are c(1 + ε), c(1 + ε)2, . . . , c(1 + ε)p

• Whenever an instance returns FAIL:

– Raise its threshold by a factor of (1 + ε)p

– Although this instance cannot access directly the items it has already seen, it relies on the
representatives R of the stream so far to represent the part of the stream already read

Space requirements

• Initially, O(k) space to determine a lower bound

• Then p copies of a O(k) space simple algorithm

• With α being constant, total space is

O
(
k log1+ε

(α
ε

))
= O

(k log1ε
log(1 + ε)

)
= O

((k
ε

log
1

ε

)
• Relying on facts that

– log(1 + ε) ≈ ε

23

– In our case, α = 2

Performance

• Focus on the instance with the smallest threshold that succeeds

• Let t be this threshold

– But the threshold of this instance might have increased several times as the streamd flowed

– Say it increased j times

– Had the following thresholds t1, t2, . . . , tj+1 = t

– Break up the stream σ into j+1 phases, each corresponding to a different threshold σ1, σ2, . . . , σj+1

• In particular, threshold ti = tj+1/((1 + ε)p)j+1−i

• Chose p = dlog1+ε
(
α/ε
)
e so that (1 + ε)p ≥ α/ε

• Hence ti ≤
(
ε
α

)j+1−1
t

• Rest of this analysis

• Cost of an optimal solution is at least t/(1 + ε)

• Solution is within (1 + ε)(α+O(ε)) = α+O(ε) of optimal

24

	Randomized Algorithms and Probability
	Definitions
	Independence
	Mutually Exclusive
	Conditional Probability
	Permutations
	Binomial Distribution

	Handy tricks
	Markov's Inequality
	Chebyshev's Inequality
	Chernoff bounds

	Birthday Paradox
	Approach 1: Probability of all birthdays distinct
	Approach 2

	Coupon Collecting
	Calculating Expectation
	Sum of expectations
	Tighter bounds

	Coin Tosses
	Sequences of tosses
	Streaks in coin tosses

	Balls in bins
	Maximum Load

	Frequent Items
	Misra-Gries Algorithm
	Properties
	Charging

	Reservoir Sampling
	Algorithm

	Counters
	Morris counter
	Properties
	Combining Morris counters

	Hash functions
	Bloom Filter
	False positive probability
	Choosing number of hash functions

	Distinct Items
	AMS
	Algorithm
	Properties

	BJKST1
	Algorithm
	Analysis

	Universal Hash Functions
	The function
	Analysis

	Estimating "higher" functions
	AMS
	Algorithm
	Expected value
	Variance
	Reducing variance

	F2 sketch (AMS) (Tug-of-war)
	Algorithm
	Expected value
	Variance
	Geometric interpretation

	Count-min sketch
	Algorithm
	Accuracy
	Choosing w
	Choosing d
	Summary

	Count sketch
	Algorithm
	Expected value
	Variance

	Sketches
	Dyadic intervals
	Heavy Hitters
	Turnstile model
	Dyadic interval sketches for range queries

	Sparse Recovery
	Count sketch for sparse recovery
	Heavy collisions
	Error bounds

	0 Sampling
	Sparse recovery for sampling
	Ganguly's Test
	Fingerprint Test
	1-sparse to k-sparse
	Algorithm
	Analysis

	Metric-style k-center clustering
	Triangle inequality
	Standard algorithm
	Doubling algorithm
	Lemma
	Algorithm
	Properties
	Effectiveness of doubling algorithm

	Guha's algorithm
	Simple Thresholding Algorithm
	Guha's Algorithm
	Space requirements
	Performance

